

PagerDuty
Process Automation On Premise

Cluster Deployment Guide

December 2023

2

Table of Contents
Introduction

Cluster Architectures

Basic Cluster

Active and Passive Cluster

Larger Clusters with Specialized Servers

Multiple Clusters Deployed to Manage Jobs as Code with Source Code Management

Notes on Cluster Architectures

Architecture Choices using Enterprise Runners

Process Automation Supported System Requirements

Server Operating System

Server (and Runner) Profile

Java

Install Method

Back-end Database

Admin Access

Log Store

Default Network Ports

Browser

Installation Checklist (in approximate order)

Server/Cluster Setup

Cluster Size

Server Scaling and Tuning

Database Configuration

User Authentication and Authorization

Load Balancing in front of Cluster

Centralized Resources and Logging

Job Load Balancing

Cluster Maintenance

Project Setup

Node Management and Communication

3

Storing Keys and Passwords

Purging Old Executions

Synchronizing Jobs using Source Code Management

Project Replication Between Servers

Encrypting Config Properties

Configuring Enterprise Runners to access remote nodes

System Configuration

Runner Installation

Configure Jobs for Runners

Resources

4

Introduction
PagerDuty Process Automation (PA) is an enterprise-grade commercial software

application based on the open source Rundeck project. PA can be deployed in a data center or
the cloud and can manage resources in local or remote environments.

One of the key features that separates Process Automation from Rundeck is that PA can
be deployed in a clustered mode, providing high availability (HA) functionality and failover for
running workflows. The center of the PA architecture is the Cluster, consisting of multiple parallel
instances1 running on Linux or Windows servers. The cluster members will take input from users
and run automation on nodes in the environment.

Cluster instances have some unique files on each server (server logs and configuration
files) but most actions are based on shared resources, such as an external relational database
and a common location to store execution history logs as jobs occur. Other than execution logs,
most data about the Process Automation environment is stored in the shared database.

In conjunction with the back-end database, the Cluster provides load balancing of job
executions, spreading the load of running jobs among available cluster instances at runtime.
Most customers will still deploy a load balancer in front of the cluster to control and balance load
in terms of access to the system interfaces. This is often the point in the architecture where SSL
may terminate.

Access to the Process Automation interface is controlled with authentication that is
customizable and should be considered as part of the deployment architecture. Though there is
a built-in user and group management system in PA, most enterprises choose instead to integrate
with their existing enterprise directory system, typically something like LDAP, Microsoft Active
Directory or an SSO (Single Sign-On) application.

The last key piece of the general PA architecture that should be considered are the nodes
to be managed by the automation system. Nodes are typically servers or network infrastructure
that will be targeted by the cluster instances as jobs are run. Workflows or jobs will have some
steps that are run on the cluster instances themselves and other steps that are run on each of
several nodes targeted in the job. Communication between an instance and a node allows for
customization but generally involves common protocols such as SSH or WinRM.

One new element in the PA architecture is the Enterprise Runner. Runners can be added
to a deployment as a way of allowing secure communication to remote networks that might
otherwise be inaccessible. Generally, one or more Runners are installed in each remote network
to manage communication to nodes in that network. Rather than the cluster instances reaching
out to the remote nodes directly, each Runner polls the cluster to find assigned work and
dispatches Job steps to nodes within their own network.

1 An instance is a physical or virtual server that is a member of the PA Cluster.

5

Cluster Architectures

Basic Cluster
A cluster consists of as few as two server members. However, best practice is to start

with a Cluster of three to ensure multiple servers will be available even when applying patches
to a Cluster member. All server instances must connect to shared resources such as a backend
database. It is recommended that all instances be largely homogenous in terms of server OS and
resources. By default, whichever instance a user connects to via the UI will run any jobs initiated
by that user. If server access is being managed through a load balancer, this will likely work fine
for small clusters.

A basic PA Cluster, with three cluster members

6

Active and Passive Cluster
For enterprise organizations who are proactively planning for Disaster Recovery, it is

possible to deploy two PA clusters in an Active/Passive mode. Each cluster has its own
infrastructure and database as well as being deployed in a separate physical or network location.
In this scenario, the Passive cluster can have its Jobs and its Execution History kept up to date by
included plugins that will sync changes from the Active cluster as updates occur. In this way, the
Passive cluster can be made active in case of disaster with up-to-date Jobs and logs.

Two Clusters configured with one Active and one Passive for Disaster Recovery

7

Larger Clusters with Specialized Servers
For organizations that have a particularly large load of Jobs to run, it is possible to deploy

a Cluster with a larger number of instances. In these cases, it can be beneficial to set specialized
roles for instances in the Cluster. Typically, this involves separating User Interface (UI) servers
from those that will do the work of running Jobs. Handled this way, the UI servers can maintain
high response times for users while the Worker servers are focused on efficiently processing
concurrent Jobs. It would also be possible to have a further separation of duties within the
Worker servers based on specialized Jobs or resources. For example, a subset of the Worker
servers might be enabled for Ansible and would run all Ansible-specific Jobs.

A single larger cluster with 10 instances (4 handling user requests and 6 running jobs)

8

Multiple Clusters Deployed to Manage Jobs as Code with Source Code Management
 For organizations that are far along the maturity curve with automation, it can be very
beneficial to manage PA jobs as code. By deploying separated clusters for each environment,
new jobs can be authored in the Dev environment and then submitted to a Git repository to go
through an approval process before being promoted for testing and eventually Production. The
number of environments and their names would be based on the organization’s processes for
source code management (SCM).

Multiple clusters deployed to manage Jobs using source code management

 Deploying multiple clusters by environment in this way can also be used to manage
different sets of nodes for access separation (Dev environment manages Dev nodes, QA manages
QA nodes, Prod only manages production environments). Architecturally, these would look the
same.

9

Notes on Cluster Architectures
The included examples are not the only ways to deploy a Cluster but are intended to

provide examples of the most common variations. Though documented individually, these
examples could be mixed as needed. For example, an Active/Passive Cluster configuration could
include more than three instances with specialized roles (or not).

10

Architecture Choices using Enterprise Runners
Runners are a recent addition to the PagerDuty Process Automation architecture. They

are primarily used to automate tasks as a method for orchestrating automation in secure, remote
environments where direct access to infrastructure and services is restricted. This is
accomplished by using a "reverse proxy" architecture: Runners regularly query (outbound only)
the Process Automation cluster for tasks to execute. Runners are assigned to one or more
projects, and then jobs within those projects can use the Runner to dispatch the Job steps to be
executed through the Runner in the remote environment.

When Runners are enabled for a job (based on Runner tags), the execution of Job steps
will be delegated to a specific Runner for management. This model offers resiliency as multiple
Runners could be enabled for a particular Project so that each Job can be assigned to a specific
Runner during high usage windows.

The diagram above outlines the difference in behavior that comes with the introduction
of Runners to a Process Automation deployment.

• On the left side, in Data Center 1, are the traditional nodes that can be accessed and
served directly by the Process Automation cluster servers. That behavior essentially
doesn’t change by the introduction of Runners.

• Of the jobs pictured, Job 1 could be executed against the DC1 nodes since it has no Runner
tags associated with it.

• Job 2, on the other hand, can be executed against nodes in AWS US-West-1. Since that
job has a Runner tag, the job will be delegated to one of the Runners with that same
Runner tag. By having multiple runners with the same tag, the job will be picked up by
whichever Runner contacts the cluster first to ask for work.

https://docs.rundeck.com/docs/administration/runner/pre-4-11-runners.html#runner
https://docs.rundeck.com/docs/learning/getting-started/jobs/what-is-a-job.html

11

Process Automation Supported System Requirements
 Included below are the basic system requirements to be considered when deploying
PagerDuty Process Automation. Following these requirements will allow a commercial customer
to receive support from the PA technical support team while under contract.
 Where relevant, the requirements include links to relevant documentation related to
installation and/or configuration.

Server Operating System
All servers in the Cluster should be of the same OS family (Linux or Windows).
Red Hat Enterprise Linux 8+/Amazon Linux 2+/Oracle Linux 8+
Ubuntu 22.04.3+/Debian 11.8+ Linux
Windows Server 2019+

Server (and Runner) Profile
Recommended:
32GB RAM
(24GB JVM Heap)
8 CPUs per instance
Equivalent to m4.2xlarge in AWS EC2

Minimum:
16GB RAM
(12GB JVM Heap)
4 CPUs per instance
Equivalent to m4.xlarge in AWS EC2

Java
Java 11 installed on each instance/Runner

Install Method
.rpm, .deb, Java servlet (.war) or Docker

Back-end Database
MariaDB 10.11.6+/MySQL 8.0.35+ PostgreSQL 15.5+ MS-SQL Server 2019 CU23+ Oracle 19c+

Admin Access
Root (or Administrator on Windows) is not required or recommended. Using a dedicated user
account such as "rundeck" is recommended. If root access is needed, please set up the dedicated
user to have access via sudo.

Log Store
S3-compatible object store or Azure blob storage

Default Network Ports
For access to interface 4443 (https), 4440 (http)
For access to most nodes 22 (ssh)
For access to Windows nodes via WinRM 5986 (https), 5985 (http)
Which ports are used often changes with configuration of the load balancer but all these ports
are configurable as needed.

Browser
Accessing automation typically requires an HTML5 compliant browser. Currently supported
versions of Mozilla Firefox or Google Chrome are recommended.

https://docs.rundeck.com/docs/administration/install/linux-rpm.html
https://docs.rundeck.com/docs/administration/install/linux-deb.html
https://docs.rundeck.com/docs/administration/install/windows.html
https://docs.rundeck.com/docs/administration/install/system-requirements.html#java
https://docs.rundeck.com/docs/administration/install/linux-rpm.html
https://docs.rundeck.com/docs/administration/install/linux-deb.html
https://docs.rundeck.com/docs/administration/install/jar.html
https://docs.rundeck.com/docs/administration/install/docker.html
https://docs.rundeck.com/docs/administration/configuration/database/mysql.html
https://docs.rundeck.com/docs/administration/configuration/database/postgres.html
https://docs.rundeck.com/docs/administration/configuration/database/mssql.html
https://docs.rundeck.com/docs/administration/configuration/database/oracle.html
https://en.wikipedia.org/wiki/Sudo
https://docs.rundeck.com/docs/learning/howto/S3-minio.html
https://docs.rundeck.com/docs/administration/cluster/logstore/azure.html
https://docs.rundeck.com/docs/administration/configuration/system-properties.html#system-properties-configuration

12

Installation Checklist (in approximate order)

Server/Cluster Setup

Cluster Size
Strictly speaking, it is possible to have a Cluster with as few as two server members.

However, best practice is to start with a Cluster of three to ensure multiple servers will be
available even when applying patches to a Cluster member.

Though many customers will start with 3 instances in the Cluster, how many instances are
needed over time is not a simple question to answer. In general terms, determining the number
of instances is dependent on the largest number of concurrent Jobs that would be running, and
the resources needed for that.

Each job will be managed at runtime by a single server in the Cluster, including
connections to all Nodes for that Job run. Effectively, that means that for a job targeting 1,000
nodes, the server will keep running the Job until all those nodes have executed the Job (including
server-side Job steps) and reported back success or failure. How many nodes will be processed
in parallel will be dependent on Job settings as well as threads and other resources available to
the server. Most Jobs will be considerably smaller than this example, but it is worth looking at
the expected peak times for Job execution (maintenance windows, for example) to estimate how
many Jobs might be running and how many Nodes could be targeted in a given timeframe.

Server Scaling and Tuning
When considering scaling, it is most effective to maximize server resources before adding

cluster members. Review these instructions for elements that can be tuned to address resource
issues. As a first step, always ensure that each server meets the system recommendations as
listed earlier in this guide.

If servers are matching system recommendation, the next item to check off the list would
be the Quartz job thread count setting on each server and increase if it is still set at the default
value (10). Adjusting the thread count increases the amount of parallel work each server can
carry out so increasing this number can allow the server to take better advantage of available
resources. However, increasing the thread count increases the amount of memory needed so be
careful not to raise this too high unless you have resources to match. What value is appropriate
will be very dependent on specific deployment details. As a rule of thumb, increasing thread
count for the minimum server profile to 300 threads and 600 for the recommended profile should
be relatively safe and increase productivity on each server.

If existing resources and increased thread count don’t affect performance enough,
consider provisioning cluster members with more RAM and/or processors. Tweaking these
settings can make a significant difference in performance and throughput.

https://docs.rundeck.com/docs/learning/howto/troubleshooting.html#tuning-rundeck-to-avoid-performance-problems

13

Database Configuration
A fresh install will include H2, a local sandbox database. This is fine for testing but is not

recommended for production deployments. Instead, cluster instances should be connected to
an external database from the supported databases listed above. All cluster members must
connect to the same active database instance, which will be accessed regularly by cluster
members. It is vital that all instances can connect to the external database with low latency. In
addition to the general instructions for connecting a single server to the database, the first cluster
member installed and connecting to the database will establish encryption settings that must be
copied to the configuration files for remaining cluster members. If the encryption settings aren’t
copied, only the first server will successfully maintain a connection to the database.

User Authentication and Authorization
All users who attempt to login to the automation web interface must be authenticated to

determine who they are and what they are entitled to. For non-production or test instances, this
can be handled with built-in user and group management. However, most commercial customers
will configure Process Automation to authenticate users using their enterprise’s directory system,
such as LDAP/Microsoft AD or an SSO provider. For SSO, bear in mind that the SSO plugin
currently supports SSO that uses OpenID v2 and doesn’t support SAML. When a user successfully
authenticates, their group memberships are shared with Process Automation and those groups
are reviewed to determine what projects they can access and what they can do within those
projects.

Load Balancing in front of Cluster
Though the Process Automation cluster will manage loads related to job execution and

node communication, best practice is to enable a load balancer in front of the cluster to manage
which cluster instances will respond to user requests and to balance that load as needed.
Recommended/supported options for a load balancer would be AWS ALB or NGINX.

Centralized Resources and Logging
For a clustered deployment, it is necessary to set up a shared location to store job

execution logs, which would otherwise only be stored locally on the server where the Job runs.
This storage should be configured to use an AWS S3 bucket for logs or an S3-compatible object
store, such as Minio. When configuring the S3 log storage plugin, be sure to use
com.rundeck.rundeckpro.amazon-s3 in place of org.rundeck.amazon-s3.
Doing so will enable checkpoint log storage which enables viewing execution logs from any
cluster member while the execution is running.

There may be other resources that need to be shared between cluster instances in which
case it is advisable to set up an additional shared location for these items. The most common
examples that come up would be file-based node sources or files to be referenced in Jobs.

https://docs.rundeck.com/docs/administration/security/authentication.html#ldap
https://docs.rundeck.com/docs/administration/security/sso.html#rundeck-sso-security-enterprise
https://www.google.com/url?q=https://docs.rundeck.com/docs/administration/security/acl-policy-editor.html%23access-control-pages&sa=D&source=docs&ust=1682953114087439&usg=AOvVaw1O1NpZ4_B2YQIpxVwHRVqS
https://www.google.com/url?q=https://docs.rundeck.com/docs/administration/security/acl-policy-editor.html%23access-control-pages&sa=D&source=docs&ust=1682953114087439&usg=AOvVaw1O1NpZ4_B2YQIpxVwHRVqS
https://docs.rundeck.com/docs/administration/cluster/loadbalancer/aws-alb.html
https://docs.rundeck.com/docs/administration/cluster/loadbalancer/NGINX.html
https://docs.rundeck.com/docs/learning/howto/S3-minio.html#steps-to-configure-s3-execution-logs-on-rundeck-oss-process-automation
https://min.io/

14

Job Load Balancing
By default, if a Job is triggered by a user, the Job will be executed on the server where the

user is logged in at the time the Job is triggered. Scheduled Jobs will be run on whichever server
the schedule was created or last modified on.

This Job behavior can be modified to follow other rules if desired. For example, rules
could be configured to run in a Round Robin (alternates executions between Cluster members),
Load-Balanced or Random pattern instead. This sort of configuration could be used to cause
cluster servers to be specialized by routing all Job executions to run on a subset of Cluster
members rather than including all servers as is most common.

Configuration of Job execution behavior is controlled by two features, Remote Job
Execution and Autotakeover. The former is used, if configured, to manage all job execution
behavior. The latter only affects scheduled Jobs.

Cluster Maintenance
There are a few cluster elements worth addressing when setting up a new deployment.

There are local logs on each server that are valuable for audit tracking regarding changes to the
system over time. These should be configured for log rotation and can be managed with Log4J2.
If you have a single cluster, establish a regular process for backup and restore. If you have a
dedicated Disaster Recovery cluster, use replication to keep the DR cluster up to date. Lastly,
check out the tuning instructions to understand how to tune the servers for greater throughput.

https://docs.rundeck.com/docs/administration/configuration/remote-job-execution.html#cluster-remote-execution
https://docs.rundeck.com/docs/administration/configuration/remote-job-execution.html#cluster-remote-execution
https://docs.rundeck.com/docs/administration/cluster/autotakeover/
https://docs.rundeck.com/docs/administration/maintenance/logs.html
https://www.google.com/url?q=https://docs.rundeck.com/docs/administration/configuration/config-file-reference.html%23log4j2-properties-new-in-rundeck-3-3-x&sa=D&source=docs&ust=1682953114086047&usg=AOvVaw2JuS4w4KO9oer2TxTqPKmO
https://docs.rundeck.com/docs/administration/maintenance/backup.html#backup
https://docs.rundeck.com/docs/administration/cluster/replication/
https://docs.rundeck.com/docs/administration/maintenance/tuning-rundeck.html

15

Project Setup

Node Management and Communication
Most Jobs will be targeting one or more nodes. Though nodes are central to the

automation solution, they are configured and accessed in the context of a project. In each
project, nodes are identified using a node resource model. The resource model either consists
of a file with node data defined in it or a plugin that connects to a third-party tool like Ansible,
ServiceNow CMBD or Amazon EC2 to gather that data from an existing source.

In addition to metadata about the nodes, the cluster must also be supplied with a method
of connecting to those nodes. Node communication is carried out using what is referred to as a
Node Executor and files are copied using a File Copier. These two elements for node
communication are customizable but most Linux-based nodes will be configured to connect using
an SSH-based executor and copier. Windows nodes are usually reached using a WinRM or
PowerShell-based executor.

Storing Keys and Passwords
PagerDuty Process Automation includes built-in key storage. Though keys can be stored

and accessed at the global level, it is best practice to manage necessary keys and passwords at
the project level. This sensitive data is stored in an encrypted form and can be accessed as
needed by a plugin or to allow connection to a node. PA also includes plugins that allow
customers to store data in three different third-party password managers: Hashicorp Vault,
Thycotic Secret Server and Cyberark Key Storage.

Purging Old Executions
By default, job execution history is written locally on the server that runs a Job and also

in a shared location for the cluster when that has been configured. That history will be
maintained indefinitely if not pruned. Best practice is to configure each project to purge history
based on the needs of the project.

Synchronizing Jobs using Source Code Management
The Git SCM plugin can be used to export jobs to a Git-like repository or import Jobs from

one. In this way, it is possible to configure a code promotion process to manage Jobs as code. A
particular project or cluster is set up for development of new Jobs. Those can be exported to Git
for approval and then imported into other clusters for testing and eventually production.

Project Replication Between Servers
PagerDuty Process Automation includes plugins that will replicate jobs and execution

history, per project, from a primary cluster to a backup one, such as a Disaster Recovery cluster.

Encrypting Config Properties
Many settings that control how Process Automation will work are stored in the primary

configuration file, rundeck-config.properties. Though that file and its contents are
only accessible to someone who has the dedicated user credentials, many customers wish to
encrypt some or all of those settings in the file. Instructions on how to do so are included here.

https://docs.rundeck.com/docs/manual/projects/resource-model-sources/builtin.html#file-source
https://docs.rundeck.com/docs/learning/howto/using-ansible.html#ansible-configuration
https://docs.rundeck.com/docs/manual/projects/resource-model-sources/servicenow.html
https://docs.rundeck.com/docs/manual/projects/resource-model-sources/aws.html#configuring
https://docs.rundeck.com/docs/manual/projects/node-execution/builtin.html#when-node-executors-are-invoked
https://docs.rundeck.com/docs/manual/projects/node-execution/builtin.html#file-copier-destination-directory
https://docs.rundeck.com/docs/manual/projects/node-execution/ssh.html#ssh-system-configuration
https://docs.rundeck.com/docs/learning/howto/configuring-windows-nodes.html#windows-configuration
https://docs.rundeck.com/docs/manual/projects/node-execution/powershell.html
https://docs.rundeck.com/docs/manual/key-storage/key-storage.html
https://docs.rundeck.com/docs/manual/key-storage/storage-plugins/vault.html
https://docs.rundeck.com/docs/manual/key-storage/storage-plugins/thycotic-storage.html
https://docs.rundeck.com/docs/manual/key-storage/storage-plugins/cyberark-storage.html
https://docs.rundeck.com/docs/manual/project-settings.html#execution-history-clean
https://docs.rundeck.com/docs/manual/projects/scm/git.html
https://docs.rundeck.com/docs/administration/cluster/replication/
https://docs.rundeck.com/docs/administration/cluster/replication/
https://docs.rundeck.com/docs/administration/configuration/encryptable-properties.html

16

Configuring Enterprise Runners to access remote nodes
As noted above, Runners are used to manage communication to nodes in remote networks in a
secure manner.

With Runners, the path to remote nodes is based on tags associated with Runners and jobs. If a
Runner is selected by tag, it will execute job steps on remote nodes and report results back to

the cluster.

To utilize Runners, there are four general steps:

System Configuration
1. Enable Runners at the system level

Though Runners will primarily be used and managed in the context of projects, the
feature must first be enabled by a system admin.

2. Create new Runners at the system level
Before installing in the remote networks, it is necessary to configure each Runner within
the web interface. For each Runner to be created, you will be prompted for three things:

A name Using clear naming can help with Runner management as the
number of Runners increases.

Define one or more
tags

Tags determine which Runner will execute which Jobs.

Assign Runner to
Projects

Each Runner must be associated with at least one Project to
be used.

https://docs.rundeck.com/docs/administration/runner/runner-setup.html
https://docs.rundeck.com/docs/administration/runner/runner-config.html

17

Assigning one or more tags to each Runner is critical as these are used to determine
which Runner is used on each job. Best practice is to use tags aligned with the location
where each Runner resides. That Runner will manage job traffic for nodes at that same
location.
After entering the necessary details, you’ll have an option to download a preconfigured
jar file for each Runner.

Runner Installation
3. Install Runner software in remote networks for each Runner that has been created

Though Runners have been defined by this point, it is still necessary to install the Runner
software in each of the remote locations. Use the jar file downloaded in the previous
step. If there is more than one runner in a single remote network, use the unique jar file
for each as credentials are included for each.

Configure Jobs for Runners
4. Add Runner tags to Jobs

New jobs will prompt authors to choose tags which represent Runners or Runner sets by
tags. It is important to review existing Jobs to ensure that they have appropriate tags
selected as well.

https://docs.rundeck.com/docs/administration/runner/runner-install.html
https://docs.rundeck.com/docs/administration/runner/runner-using.html

18

On each job, a tag will determine which Runner(s) are available to run jobs. This tag
matches one assigned to the Runner under Runner Management.

Resources
Advanced Runner Setup Options
Runner Custom Logging
Runner FAQ

https://docs.rundeck.com/docs/administration/runner/runner-advancedsetup.html
https://docs.rundeck.com/docs/administration/runner/runner-logging.html
https://docs.rundeck.com/docs/administration/runner/runner-faq.html

	Introduction
	Cluster Architectures
	Basic Cluster
	Active and Passive Cluster
	Larger Clusters with Specialized Servers
	Multiple Clusters Deployed to Manage Jobs as Code with Source Code Management
	Notes on Cluster Architectures
	Architecture Choices using Enterprise Runners

	Process Automation Supported System Requirements
	Server Operating System
	Server (and Runner) Profile
	Java
	Install Method
	Back-end Database
	Admin Access
	Log Store
	Default Network Ports
	Browser

	Installation Checklist (in approximate order)
	Server/Cluster Setup
	Cluster Size
	Server Scaling and Tuning
	Database Configuration
	User Authentication and Authorization
	Load Balancing in front of Cluster
	Centralized Resources and Logging
	Job Load Balancing
	Cluster Maintenance

	Project Setup
	Node Management and Communication
	Storing Keys and Passwords
	Purging Old Executions
	Synchronizing Jobs using Source Code Management
	Project Replication Between Servers
	Encrypting Config Properties

	Configuring Enterprise Runners to access remote nodes
	System Configuration
	Runner Installation
	Configure Jobs for Runners
	Resources

